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A model equation for steady surface waves over a bump
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Abstract. The objective of this paper is to study the solutions of a model equation for steady surface waves on an
ideal fluid over a semicircular or semielliptical bump. For upstream Froude number F> 1, we show that the
numerical solution of the equation has two branches and there is a cut-off value of F below which no solution exists.
For F < 1, the problem is reformulated to overcome the so-called infinite-mass dilemma. A branch of solutions and
a cut-off value of F, above which no solution exists, are found. Furthermore, we also obtain a branch of
hydraulic-fall solutions which decrease monotonically from upstream to downstream.

1. Introduction

The problem considered here concerns steady surface waves on a two-dimensional, incom-
pressible, inviscid fluid flow over a small bump on a flat bottom. Assume that the depth H*,
and the speed c of the fluid flow far upstream are constant and an upstream Froude number
F is defined by F = c/(gHo) /2 where H0 is the constant depth of the fluid flow as the size of
the bump becomes zero. We call a solution to this problem supercritical (subcritical) if F > 1
(F < 1). Numerical computations of steady solutions to exact equations for a semicircular
bump (Forbes and Schwartz [1], Vanden-Broeck [2], and Forbes [3]) indicate the following
results. For 1 < F < F there are two branches of supercritical solutions and no solution
exists below F+. Each supercritical solution behaves like a solitary wave. As the size of the
bump tends to zero, one branch approaches the uniform state far upstream and the other
branch approaches a solitary wave. As F increases, the branch of larger solutions approaches
a limiting configuration with a 1200 angle at the crest. For F < F < 1, only one branch of
subcritical solutions is found and no solution exists above F_. They exhibit a quiescent
region upstream and a Stokes wave train downstream. In F_ < F < F+ even if no steady
solution exists unsteady waves can appear. Recently a solution which behaves like a
hydraulic fall with F < 1 and the downstream Froude number Fd = CJ/(gHo)"2 > 1 has been
found [3], where C. is the constant speed at x = o. The solution remains almost constant up
to the obstacle, then decreases monotonically to a constant value far downstream.

If F= 1 + F is close to unity where e is a small positive parameter, an inhomogeneous
nonlinear ordinary differential equation can be derived as a model equation for the study of
the steady surface waves over the bump. The purpose of this paper is to study systematically
the solutions of the model equation and compare them with the numerical solutions to the
exact equations ([1] to [3]). In the following discussion, we shall restrict ourselves to the case
of a semicircular or semielliptical bump. However, the general method may be applied to an
arbitrary obstacle with a compact support. For F, >0 it has been indicated in [4] that
multiple supercritical solutions for a given bump may exist. Here we show numerically that
there appear two supercritical solutions for each F greater than some cut-off value. Both
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behave like a solitary wave. One approaches the uniform state and the other, a solitary
wave, as the bump size tends to zero. For each F. < 0 below some cut-off value, there exists
a solution equal to zero upstream and expressed in terms of the cn function downstream.
However, the mean depth of the cn function is not zero; there is infinite mass increase or
decrease and the perturbation scheme fails. This is the so-called infinite-mass dilemma. To
overcome this difficulty, we assume that the perturbed free surface approaches a nonzero
constant H1 far upstream and impose the condition that the sum of H and the mean depth of
the downstream periodic solution vanishes. Under the condition the model equation still has
one branch of subcritical solutions below a cut-off value of F <0, and both H and the
period of the downstream solution can now be determined. Assume again F < 0 is given and
relax the condition to resolve the infinite-mass dilemma. We may construct a solution with
constant Hi up to the obstacle and expressed in terms of the cn function downstream of the
obstacle. As F tends to a cut-off value from below, the downstream cnoidal solution
approaches to a monotone profile with F > 1. It is found that there is only one value of H I

such that the solution tends to -H l far downstream. These results agree well with the exact
solutions obtained in [1], [2] and [3] except that the supercritical solution with a 1200 angle at
the crest is beyond the reach of the model equation. The model equation with HI = 0 was
also derived in [5] and [6] among others. However, the question concerning the infinite-mass
dilemma has not been discussed in the literature.

We formulate the problem and derive the model equation for steady surface waves in
Section 2. Although the derivation is rather straightforward, we intend to make the needed
modification of the usual formulation to overcome the infinite-mass difficulty. The numerical
solutions are discussed and presented in Section 3.

2. Formulation

The configuration of the fluid flow over a bump is shown in Fig. 1. The governing equations
are the following:

u*. + vy = O. (1)

p(u*ux . + v uy*) = -p*, (2)

p(v*V + v*vy) )=-p - pg, (3)

C | H * l 9

'HP , ,![9

r*

7, ,, II. *
Fig. 1. Configuration of the fluid domain.
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at y* =H+/*: u*** - v* = , p*=0, (4)

at y* = h*(x*): u*h . - v * = O (5)

where (u*, v*) is the velocity, p* is the pressure, p is the constant density, g is the constant
gravitational acceleration, and y* = H0 + ,/*, y* = h* are respectively the equations of the
free surface and the bottom. We introduce the nondimensional variables

(u, v) = (U*, E-l2*)/(gH)1/2

p =p*/(pgHo),

H_ = H*_/Ho,

17 = * Ho 

(X, y) = (l/
2
X*, y*)/HO ,

h = e2h*Ho ,

E2 = H/L

where e is a small positive parameter and L is the horizontal length scale. In terms of the
nondimensional variables, (1) to (5) take the form

Ux + Uy = 0, (6)

uux + uy = --Px 

E(UU + UUy) = -y - 1 ,

at y =1 + : Uqx - v = 0,

(7)

(8)

p=O, (9)

at y = e 2 h: e2uh - = 0 (10)

Assume that u, v, p and 77 possess asymptotic expansions of the form

4 = +0 etl + E202 + -.' (11)

We also expand H__ in an asymptotic series as

H_ = 1 + e2H2 + .. , (12)

and note that H here plays a crucial role to resolve the infinite-mass dilemma. Without loss
of generality, we let

F= F+ EF, (13)

where F0 (called the critical Froude number) has to be determined. Substitution of (11) in
(6) to (10) will yield a sequence of equations and boundary conditions for the successive
approximations O,. The zeroth approximations are assumed to be given,

(u?0 , Vo0 ) = (FO; 0), (0) = -Y+ 1,PO Yl (0) = 0 .N1 

The equations for the first approximations are

(14)
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Ulx = Uly = 0,

Foulx + Plx = 0 ,

ply =0,

Fo1 x - V1 = 0 ,

v =0 aty=0.

Pl=1 1 aty=1,

We see from (17) that p, is a function of x only and p =,71. It follows from (16) by
integration with respect to x and the boundary conditions u0 - Fo, ,---> HI as x---> -m- that

(20)u = -Fo(, 1 - Hi) + F .

Then, from (15), (19) and (20), we have

(21)V1 = Fo7lxY.

(18) and (21) then yield

F = 1.0 (22)

In the following we shall always choose F = 1. The equations for the second approximations
are

U2x + V2y = 0, (23)

U2x + UlU2 x + UIUly + P2x = 0,

'Ix + P2y = 0 ,

712x + Ullx - 2 - Uly 11 = 0

P2 = 72

hx -v 2 =0 aty=0.

(26)
aty = 1,

(27)

(28)

It follows from (21), (25) and (27) that

P2 = -71,x[(Y - 1)2/2 + (y - 1)] + 712 

Then from (20), (21), (24) and (29) we obtain an expression for u2x in terms of all and rl2,
and substitute it in (23). Integration of the resulting equation with respect to y from y = 0 to
y = 1 and use of (26), (28) and F0 = 1 yield the equation for /1,

(30)

(15)

(16)

(17)

(18)

(19)

(24)

(25)

(29)

(F + H,),q1x - (3 2)7qlqx - (1 6),1xxx = hx12 .
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The above equation can be further integrated to yield

(F1 + H, )711 - (3/4)7,2 - (1/6)7,, = h/2 + (F1 + H 1)H 1 - (3/4)H . (31)

where we have used the boundary condition -1 ->H1, ,71xx-0 as x-- -. (30) is the
equation to be studied in the next section and H1 is an unknown constant to be determined
as part of the solution.

3. Supercritical and subcritical solutions

Case 1. Supercritical solutions

In this case we look for solutions of (31) symmetric with respect to x, which together with its
first derivative approach zero as x-- +xc. Therefore we set H1 = 0 and (30) becomes

F1 71 - (3/4),2 - (1/6)7,lxx = h/2. (32)

For Ixl - 1, h = 0, and (32) can be further integrated to yield

F1 (71)2 - (1 /2)713 -(1/3)T 1 x = 0, (33)

which possesses the well-known solitary-wave solution

771 = 2F1 sech2 [(6F1)'/2(x - x ) /2] , (34)

where x is the phase shift. To find a solution in Ixl 1, we need only consider (32) in
-1 < x - 0 subject to (33) at x = -1 and 711x = 0 at x = 0. The above problem can be solved
numerically by a shooting method and the phase shift x is then determined by (34) for
x = -1. In Fig. 2 we show the relationship between A= max_,,<,,x< 71 and F for
h = a(1 - x2 ) '/ 2 , IxI - 1 and h = 0 otherwise, where a = 0.1, 0.5 and 1. Two typical solutions
corresponding to F, = 1.4, a = 1 are shown in Fig. 3.

=1

0 1 2 F

Fig. 2. Relationship between A and F. for supercritical solutions.
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Fig. 3. Two typical supercritical solutions, F = 1.4.

Case 2. Subcritical solutions

In this case we construct a solution which is constant for x < -1 and periodic for x > 1.
However, for Hi = 0, that is *1 O0 in x - -1, there is no periodic solution of (32) for x 3 1,
whose mean value over one period is zero. Therefore, we impose the asymptotic condition of
conservation of volume

X-I f dx + H1 = 0, (35)

where X is the period of m71 in x - 1. (35) may be expressed in terms of the values of z11, 71x
at x = 1. We multiply (31) by 71x and integrate the resulting equation from 1 to x to obtain

71ix = - 3 (71 - Hi)2 (1 + 2 ) + d =f(*1) , (36)

where A2 = -F 1 and

d = yjx(1) + 3[/j(1) - H 11[q(1) + 2A ].

We require

4(2A + H) 319 > d > 0, (37)

so that f(7 1) = 0 has three distinct roots

G0 = (2/3)(2A2 + H.) cos 01 - (2/3)(2/3)(A2 - H1),

1 = -(2/3)(2A + H1) cos(01 + z-/3) - (2/3)(A; - H) ,
(38)

2 = -(2/3)(2A; + H 1) cos(01 - Tr/ 3 ) - (2/3)(A~ - HI),

0 = (1/3){rT - arccos[1 - (9/2)d(2A, + H1)3]} > 0.
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The solution 71, of (36) for x 1 can be expressed as

il = o COS 2 ' + 1 sin 2 T', (39)

where

(a)/2 = f (1 /2 sin2 )-1/ 2 d, (40)

a = (3/4)(o - 2), p 2 = ( - 1el)/(0 - 2) . (41)

The mean value of r7 in x 1 over a period X is

[22 (1-/32 sin - 2
)-t/2 d; + 2( o - 2) + f (1 _3 P2 sin2

)1/2 d (a /2X), (42)

where

/l2

X = 2(a) - 2 (1 - 32 sin 2
T)

112 d . (43)

Combining (35) and (42), we obtain the boundary condition at x = 1:
r/

2 /2

(H. + 2) f (1 - 32 sin2 T) 1 /2 d + (o0 - 2) f (1 - 32 sin 2 )1/2 d = 0. (44)

(36) subject to 7lx = 0 at x = -1 and (44) at x = 1 can also be solved by a shooting method.
For a negative F, less than some cut-off value, we find one subcritical solution, which is
equal to H1 for x -1 and periodic for x 1. Here we consider the same h as in the
supercritical case. In Fig. 4, we show the relationship between A = max_,<<,, 171 and F, for
two cases a = 0.5, 1, and note that for each branch of solutions there is a cut-off value of F1
above which no subcritical solution exists. As a tends to zero, a subcritical solution also
approaches zero. A typical solution corresponding to F1 = -1.3, a = 1 is presented in Fig. 5.

A

1.5
1.304

0.880 1.0

0.5

a =1.0
a = 0.5 -1.07 i- 0.73

-5.0 -4.0 -3.0 -2.0 -1.0 F

Fig. 4. Relationship between A and F. for subcritical solutions.
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Fig. 5. A typical subcritical solution, F, = -1.3.

We also note that at a cut-off value of F the solution generally remains periodic down-
stream, but for F > F the amplitude of the downstream solution becomes unbounded.

We now relax the condition (35) and assume a = 1. For a given H and F below some
cut-off value Fc < 0, there exists a solution 7,, equal to H. for x - -1 and periodic for x 1
as given by (38) to (41). As F- F from below, by (37) to (41), 3--1, X--->, d--->(4/
9)(2AI + H,)3 , and the limiting solution of 7, for x 1 is

= -(2/3)(2A2 - H1/2) + (2A: + H 1) sech 2[(A2 + H 112)1 12 x].

As x-*,

71 -(2/3)(2A - H2) = 71() 

In Fig. 6, we plot both H. and -, 1 () against F. The two lines intersect at F = -0.8610 and
F, + H1 0 if F < -0.8610 and >0 if F> -0.8610. By conservation of mass flux, we have

F, + H = Fd + 1h( () .

4

3

2

1

0

-1

-2

I -, . t _-

Fc-2 -1.5 -1 -0.5 0

Fig. 6. H and -mh(c) vs. F,, a = 1.
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Fig. 7. Free-surface profile for F = -0.8610, a = 1.

At F = -0.8610, H = -/l(QO) = Fd = 0.8610. The flow represents a hydraulic-fall solution,
which is subcritical upstream and supercritical downstream and satisfies asymptotically the
condition of conservation of volume. The free-surface profile is shown in Fig. 7.
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